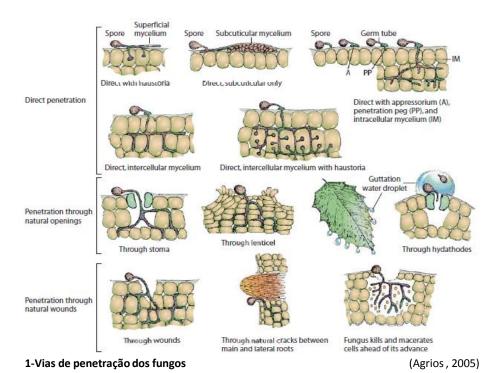
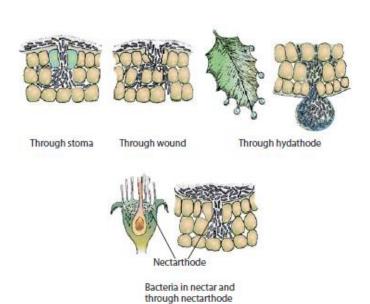


Interações patógenohospedeiro: Mecanismo de ataque

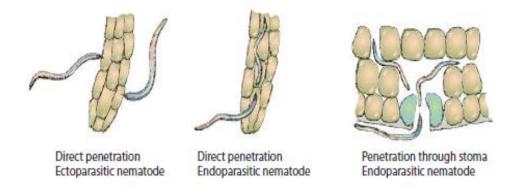
Aline Cristina Velho Junho, 2016


INTERAÇÕES PATÓGENO-HOSPEDEIRO


INTERAÇÕES PATÓGENO-HOSPEDEIRO

- Patógenos necessitam do hospedeiro para:
 - Retirar nutrientes para o seu metabolismo
 - Atividades vegetativas e reprodutivas
- Onde os patógenos encontram esses nutrientes??
 - Interior das células vegetais;
 - Necessitam de estratégias para vencer as barreiras externas e promover a colonização dos tecidos;

Mecanismos de ataque


- Vias de Penetração:
- Direta (força mecânica, enzimas)
- ➤ Aberturas naturais
- > Ferimentos
 - Bactérias são incapazes de penetrar diretamente;
 - Vírus, viróides e fitoplasmas necessitam de ferimentos
 - Fungos podem penetrar pelas três vias

2-Vias de penetração das bactérias

(Agrios, 2005)

3-Vias de penetração dos nematóides

(Agrios, 2005)

Mecanismos de ataque

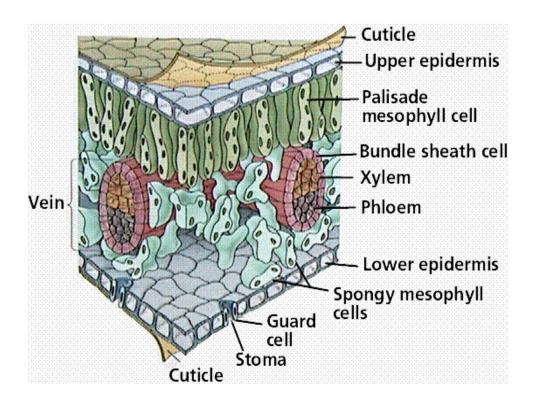
- Enzimas: desintegram componentes estruturais das células do hospedeiro;
 - -Exoenzimas (podridão mole).
- **Toxinas:** alteram a permeabilidade das membranas; -*Bipolaris* spp.
- Hormônios: alteram a divisão e crescimento celular;
 -Agrobacterium tumefaciens (galhas da coroa).
- Todos fitopatógenos, exceto vírus.

Mecanismos de ataque

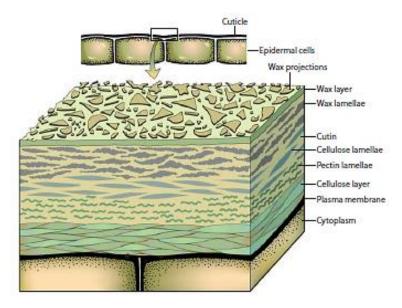
Penetração direta

- Vencer barreiras e neutralizar as reações de defesa da planta
- Colonizar e retirar nutrientes
- Parte aérea
 - Cutícula na epiderme (Cutina)
- · Raízes e ramos lenhosos
 - Periderme (Suberina)

Enzimas


- Proteínas de alto peso molecular;
- Construídas por longas cadeias de aminoácidos;
- Responsáveis pelas reações de catabolismo e anabolismo nas células animais e vegetais;
- Denominadas em função do seu substrato;
- Utilização sufixo ASE

Enzimas


- Critérios para comprovar o envolvimento de uma enzima na patogênese
 - Capacidade do patógeno em produzir a enzima in vitro;
 - Detecção em tecido infectado;
 - Correlação da produção da enzima com patogenicidade;
 - Alteração nas paredes de tecidos infectados;
 - Reprodução das alterações na parede ou sintomas com o uso da enzima

CUTINASES

- Esterases que degradam a cutícula
 - -Cutícula: camada lipídica contínua, que recobre a epiderme de folhas, frutos e talos jovens
 - -Evita a difusão de água e nutrientes para o ambiente externo,
 - -Protege a planta contra efeitos adversos e o ataque de fitopatógenos.
 - -Componentes: compostos alifáticos (ceras) + polímero insolúvel (cutina)

Representação esquemática da estrutura e composição da cutícula e da parede celular das células epidérmicas (Agrios , 2005)

CUTINASES

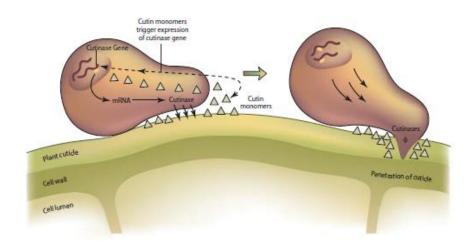
- Formada por uma única cadeia polipeptídica
- Peso molecular entre 22 e 32 kDa
- 3-16% CHO'S na molécula
- Atividade máxima: pH 9-10
- Purificada pela primeira vez em 1975 a partir do fluído extracelular de Fusarium solani f. sp. solani
- Encontrada em diversos fungos, como:
 - Colletotrichum, Blumeria, Bipolaris, Sclerotium, Uromyces, Venturia,
 etc.

CUTINASES

- Produção in vitro desta enzima não necessariamente significa prova da importância dela nas plantas:
- Diversos estudos
 - Imunocitológicos
 - Transformação genética
 - Mutantes deficientes

Fusarium solani f. sp. pisi - Ervilha

- Estudos com haste de ervilha;
- Microscopia eletrônica de varredura;
- Detectaram presença de anticorpos marcados com ferritina e específicos para cutinase em locais onde o patógeno foi inoculado;
- O fungo excreta cutinase somente quando em contato com o hospedeiro.



Colletotrichum gloeosporioides - mamão

- Mutantes deficientes em cutinase mostraram-se patogênicos somente em frutos com ferimentos;
- Frutos intactos não manifestaram a doença;
- Aplicação exógena de cutinase, restaurou a capacidade patogênica do fungo;
- *C.g* penetra cutícula de frutos imaturos e pode permanecer latente até após o amadurecimento.

Representação esquemática da penetração da cutícula por um esporo do fungo durante a germinação. Cutinase constitutiva (pré formada) libera monômeros de cutina na cutícula vegetal. Estes, desencadeiam a expressão dos genes da cutinase, levando à produção de mais cutinases, permitindo assim a penetração do fungo (Agrios 2005).

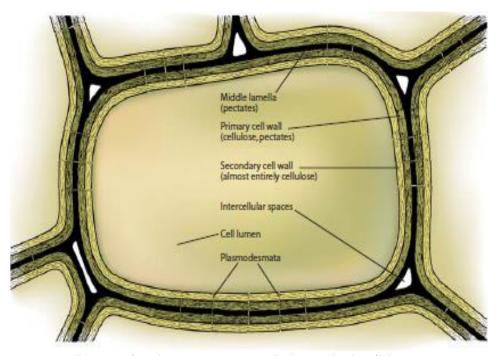
CUTINASES

• Importância da descoberta:

Potencial para controle de doenças

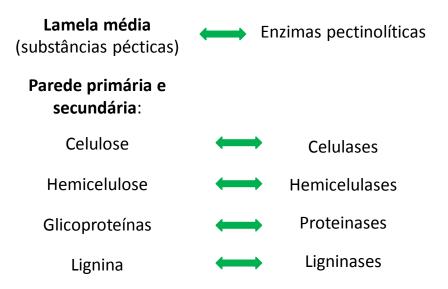
- A desativação da enzima na superfície do hospedeiro, evitaria a penetração e consequentemente a doença;
- Uso de compostos antipenetrantes.

SUBERINA

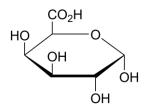

- Recobre os órgãos subterrâneos;
- · Polímero insolúvel associado com ceras solúveis;
- A estrutura e a composição das paredes suberizadas não são bem compreendidas:
 - Matriz fenólica semelhante a lignina, ligada à parede celular.
 Os componentes alifáticos estariam ligados à matriz fenólica e embebidos numa camada de cera
- Alguns patógenos podem penetrar as paredes suberizadas, porém muito lentamente.

SUBERINA

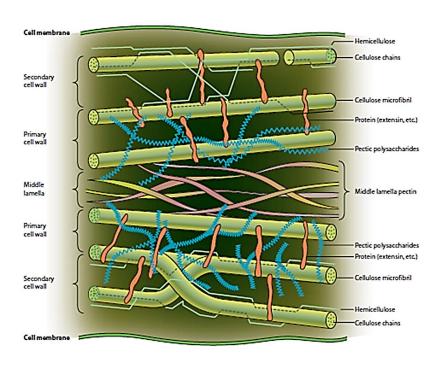
- Evita a difusão da água e nutrientes;
- Também é formada quando há injúria mecânica e abscisão de folhas e frutos
- Existem indicações de que a bactéria Ralstonia solanacearum consegue degradar a suberina
- Streptomyces scabiens (sarna da batata)


DEGRADAÇÃO COMPONENTES DA PAREDE CELULAR

- Durante a penetração e colonização, os fitopatógenos atravessam as paredes celulares das plantas
- Regiões e composição da parede celular:
 - lamela média: entre as paredes celulares
 - parede primária: entre a membrana plasmática e a lamela média;
 - somente em células em ativo processo de crescimento, após a divisão celular ser completada
 - parede secundária: internamente à parede primária, formada após o término da expansão celular


Representação esquemática da estrutura e composição das paredes das células vegetais

Enzimas – degradação da parede celular


Lamela média

- Constituída por substâncias pécticas
- Polissacarídeos formados por longas cadeias de ácido D-galacturônico/poligalacturônico
- Grau de metilação dos grupos carboxílicos
 - Ac. poligalacturônico (< 75%)
 - Pectina (> 75%)
- 35% Dicotiledôneas
- 9% Monocotiledôneas

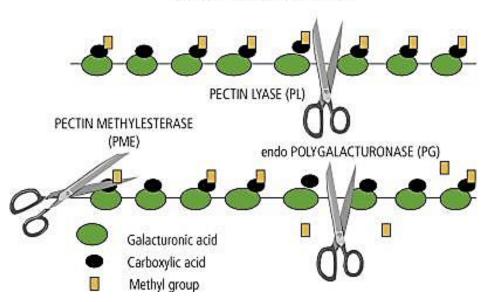
Lamela média

- Substancia pécticas formam gel amorfo que preenche os espaços entre as microfibrilas de celulose
- Ligações entre cadeias por meio de íons de Ca
- "cimento intercelular"

Enzimas Pectinolíticas (pectinases)

· Hidrolases:

- MPG Metilpoligalacturonases: mais específica para a ác. pectínico (pectina)
- PG-Poligalacturonases: mais especifica para o ác. poligalacturônico
 - exo (libera monômeros) e endo (libera oligômeros)


Trans-eliminases (β-eliminases):

- TE Trans-eliminases do ác. pectínico =Pectina liase
- TEPG Trans-eliminases do ác. poligalacturônico=Liase do ácido péctico
 - exo (libera monômeros) e endo (libera oligômeros)

Metilesterases da pectina

- PE-Pectina esterase: promove demetilação da pectina (hidólise radicais metila)
- Alteram propriedades do polímero (ex: solubilidade)

Mode of action of the main pectolytic enzymes

Enzimas Pectinolíticas (pectinases)

- Degradação dos tecidos (separação das células)
- Mutantes de Erwinia chrysanthemi
 - Deficientes produção enzimas pectinolíticas
 - Transferência gene (Pat) para síntese de TEPG
 - Pat+ causam degradação dos tecidos de batata, cenoura e aipo
- Uso de transformantes de Escherichia coli com TE podem causar podridão mole

Enzimas pectinolíticas (AGRIOS, 2005)

Doença: Podridão em cebola Agente causal: Botrytis sp.

Doença: podridão de batata Agente causal: Pectobacterium

Parede primária e secundária

Hemiceluloses

- Dicotiledôneas:
 - xiloglucana: parede primária
 - ligações glicosídicas β -1,4 e xilose β -1,6 com xilose
 - xilanas: parede secundária
 - xilose com ligações β-1,4
- Monocotiledôneas:
 - arabinoxilanas: cadeias laterais de arabinose
 - β -glucanas: glicose unidos por ligações β -1,3 e β -1,4

Hemicelulases

- A degradação das hemiceluloses requer atividades das hemicelulases
 - Endoglucanases = β -1,4 xiloglucana
 - Endoxilanases β-1,4 xilanas
 - Diversas outras hidrolases (β-glucosidases, β-galactosidase, etc.)

Celulose

- Polissacarídeo (glicose em ligações β-1,4)
- 20-30% nas paredes primárias
- 40% parede secundária plantas lenhosas

Celulases

- Degradação celulose e feita pelas celulases
- β-1,4 D-glucanase
- β-1,4 D-glucana celobiohidrolase
- β-glucosidase

Celulases

- Rhizoctonia solani
 - Penetra as paredes celulares e destruindo a celulose;
 - Causa o colapso das células, resultando na formação de lesões deprimidas no hipocótilo do feijoeiro
- Fusarium oxysporum e Verticillium albo-atrum
 - Patógenos causadores de murcha
 - Liberam oligômeros no interior do xilema alterando o fluxo normal de água
 - Bloqueio dos elementos vasculares

Enzimas celulases (AGRIOS, 2005)

Fusarium sp. - podridão do colmo de milho. Destrói a celulose mas não o tecido vascular lignificado

Ligninases

- Degradam lignina
- Principalmente em plantas lenhosas
- Podridão branca causada por fungos saprófitas
- Basidiomicetos (Ganoderma)

Enzimas ligninases - Basidiomicetos

(AGRIOS, 2005)

Doença: Podridão do tronco Hospedeiro: pinheiro Agente causal: *Phellinus* sp.

Doença: Podridão de raízes e colo Hospedeiro: pinheiro Agente causal: *Phellinus* sp.

Enzimas – degradação de componentes da membrana plasmática

- Membranas são constituídas:
 - 40-50% proteínas
 - 40% lipídios
 - 0-10% carboidratos

Proteases/proteinases

- Degradam vários tipos de moléculas de proteínas

Amilases

- Degradam amido ou outros polissacarídeos de reserva
- Produto final = glicose (utilizado diretamente pelos patógenos)

Enzimas – degradação de componentes da membrana plasmática

Lipases e fosfolipases

- Produto final = liberam ácidos graxos a partir da degradação dos fosfolipídios
- Utilizado diretamente pelos patógenos

Toxinas/Fitotoxinas

- São produtos de patógenos microbianos, que causam danos aos tecidos vegetais e que estão reconhecidamente envolvidos no desenvolvimento da doença (Scheffer, 1983)
- Afetam diretamente o protoplasma;
- Afetam as funções celulares;
- Alteram a permeabilidade das membranas.

Toxinas/Fitotoxinas

- Substâncias de baixo peso molecular (<1000 daltons);
- Ativas em concentrações fisiológicas (<10⁻⁶ a 10⁻⁸ M);
- Móveis
- Não apresentam características enzimáticas, hormonais ou de ácidos nucléicos;
- Não exibem características estruturais comuns e incluem substâncias como peptídeos, glicopeptídeos, derivados de aminoácidos, terpenóides, etc.

Toxinas/Fitotoxinas

- Desenvolvimento sintomas: clorose, necrose, murcha;
- Alteram a permeabilidade e/ou potencial das membranas;
- Mudanças no equilíbrio iônico/Perda de eletrólitos;
- Inibição ou estímulo de enzimas específicas;
- Aumento na respiração e na biossíntese de etileno;
- Promovem e/ou aceleram a senescência dos tecidos;
- · Induzem deficiências nutricionais na planta;

Classificação

Não seletivas ou não específicas ao hospedeiro

- Tóxicas a várias espécies de plantas, hospedeiras ou não hospedeiras.
- Fatores de virulência ou determinantes secundários de patogenicidade
- Contribuem para a severidade da doença, mas não são essenciais.
- Maioria das toxinas se enquadra nesta categoria

Não seletivas ou não específicas ao hospedeiro

• Exemplos:

- Tabtoxina Pseudomonas syringae pv. tabaci Fumo
- Faseolotoxina-P. syringae pv. phaseolicola-Feijão
- Siringotoxina P. syringae pv. syringae Citros
- Tentoxina Alternaria tenuis algodoeiro
- Cercosporina Cercospora beticola beterraba
- Ácido fusárico- Fusarium oxysporum f.sp. cubense -banana

Fitotoxinas não-seletivas ao hospedeiro

- Faseolotoxina

- Pseudomonas syringae pv. phaseolicola,
- Doença: Crestamento de halo em feijoeiro
- Sintoma primário: mancha de óleo
- Sintoma secundário: halos cloróticos, clorose sistêmica e nanismo.
- Baixas temperaturas favorecem a produção da toxina
- Tripepeptídio ⇒ ornitina, alanina e arginina

Não seletivas ou não específicas ao hospedeiro

(A) sintomas iniciais e (B) avançados em folhas jovens de fumo, manchas causadas por *Pseudomonas syringae* pv. *tabaci* e halos cloróticos causados pela tabtoxina produzida pela bactéria.

Classificação

Seletivas ou específicas (patotoxinas)

- São tóxicas somente em espécies de plantas que são hospedeiras do patógeno produtor da toxina;
- Essenciais para o estabelecimento do patógeno no hospedeiro e para a manifestação da doença;
- São fatores de patogenicidade ou determinantes primários de patogenicidade;
- Produz sintomas característicos das doença

Exemplos de fitotoxinas seletivas (específicas) (Pascholati, 2011).

Toxina	Fungo produtor	Hospedeiro
HV (victorina)	Cochliobolus (Helminthosporium) victoriae	Aveia (Avena stiva)
HC	C. (Helminthosporium) carbonum raça 1	Milho (Zea mays)
HmT (toxina T)	C. heterostrophus (Bipolaris maydis) raça T	Milho (Z. mays)
HS (helmintosporoside)	C. (Helminthosporium) sacchari	Cana-de-açücar (Saccharum spp.
PC'	Periconia circinata	Sorgo (Sorghum vulgare)
AK	Alternaria ulternata patótipo pera japonesa (A. kikuchiana)	Pēra japonesa (Pyrus serotina)
AM	A. alternata patótipo macieira (A. mali)	Maçã (Mulus sylvestris)
ACRL	Alternaria citri patótipo limão	Limão rugoso (Citrus jambhiri)
ACTG	A. citri patòtipo tangerina	Tangerina Dancy e mandarinas
AL	A. alternata f.sp. lycopersici	Tomate (Solanum lycopersicum)
CC	Corynespora cassiicola	Tomate (S. hyopersicum)
PM	Mycosphaerella zeae-maydis (Phyllosticta maydis)	Milho (Z. mays)

Mancha foliar de milho causada por *Cochliobolus heterostrophus* (T-toxina).

Manchas em pêra japonesa causadas por *Alternaria alternata* (AK-toxina).

Mancha foliar do milho causada por *Cochliobolus carbonum* (HC-toxina)

Mancha foliar em macieira causada por outro isolado de *Alternaria alternata* (AM-toxina).

Fitotoxinas seletivas

• Toxina HV (victorina)

- Helminthosporium victoriae
- Queima das folhas e podridão do colo e raízes de aveia
- Cultivar Victoria altamente suscetível (gene Vb-resistência a Puccinia coronata)
- É a mais potente e seletiva
- Causa sintomas macroscópicos e mudanças histoquímicas e bioquímicas no hospedeiro

Fitotoxinas seletivas

Toxina HmT (Toxina T)

- Bipolaris maydis, raça T
- Queima da folha em milho com citoplasma T (macho esterilidade)
- Inibe o crescimento de raízes, altera fotossíntese, causa fechamento de estômatos, interferindo com o transporte de íons, K+ é perdido para ambiente externo

Fitotoxinas seletivas

Toxina AK

- Alternaria alternata (Pêra japonesa);
- Mancha negra em folhas e frutos;
- A toxina é produzida durante a germinação do conídio e antes da invasão dos tecidos do hospedeiro;
- 20 min após a infecção ocorre perda de eletrólitos (K+ e fosfatos)
- Pêras suscetíveis exibem sintomas necróticos, enquanto as resistentes não;

Fitotoxinas seletivas

Toxina AM

- Alternaria alternata (Maçã);
- Manchas em folhas e frutos;
- Perda de eletrólitos
- Alteração dos cloroplastos e rápida perda de colorofila

Hormônios

- São compostos que ocorrem naturalmente nas plantas;
- Ativos em baixas concentrações;
- Agem à distância do sítio de produção;
- Promovem, inibem o modificam o crescimento das plantas;
- · Desequilíbrio hormonal;

Hormônios

Auxinas

- Aumentam a plasticidade das células e alongamento celular
- ácido indolil-3-acético (AIA)
- F. oxysporum f. sp. cubense, Phytophtora infestans,Ralstonia solanacearum) etc.

Hormônios

• Giberelinas (GA3)

- Alongamento de entrenós, reversão do nanismo
- Isolado e purificado pela primeira vez- Giberella fujikuroi (F. moniliforme)
- Superalongamento em plantas de arroz
- Podem aumentar a síntese de Auxinas

Hormônios

Citocininas

- Indução divisão celular;
- Inibem a senescência;
- Germinação sementes dormentes;
- Agrobacterium tumefaciens, Nectria galligena, etc.

Hormônios

Etileno

- Desfolha
- Inibição do crescimento,
- Epinastia, etc.
- Fusarium oxysporum, Ralstonia solanacearum, Pectobacterium carotovorum, etc.

Ácido Abscísico (ABA)

- Inibição crescimento,
- Abcisão de folhas e frutos
- Botrytis cinerea, Mycosphaerella cruenta